Utilizing Performance Mechanisms to Support Priority Regulatory Outcomes Illinois Commerce Commission Performance and Tracking Metrics Workshop #2 October 13, 2021 Cara Goldenberg – cgoldenberg@rmi.org # Different metric types may be warranted depending on data availability and desired utility actions | Metric
Type | Description | Examples for Peak Demand Reduction | |--------------------|---|---| | Activity-
based | Track specific utility actions or decisions Could be helpful if direct measurement of an outcome is not possible May not support development of effective programs | Number of marketing materials announcing a
time-varying rate sent to customers Percentage of households with advanced meters
installed | | Program-
based | Measure performance of specific utility programs Can be easier to measure than system-level metrics May not result in most cost-effective utility actions to achieve outcome Are more likely to interact and overlap with each other | Percentage of households enrolled in a time-varying rate MW of load participating in a demand response program | | Outcome-
based | Focus on whether an outcome is achieved Cost recovery for all utility actions may not be guaranteed May be difficult to determine whether utility actions or external factors have led to desired outcomes | MW of total system peak demand reduction | Metrics can be used to measure and make visible utility performance across a wide range of regulatory outcomes # GHG emission metrics often track absolute emissions or emissions intensity | Metric | Metric Formula Options | |--|-------------------------------------| | SO ₂ Emissions | Tons, Tons/year, lbs/kWh | | Average NOx Rate | lbs/MMBtu | | Total Criteria Pollutant Emissions | Total pollutants emitted/year | | Total Criteria Pollutant Emissions Intensity | Total pollutants emitted/MWh | | GHG Emissions (CO ₂ , Methane, SF ₆ , etc) | Tons/year; Tons/customer | | CO ₂ Emissions Intensity | CO ₂ tons/MWh; grams/kWh | | Fossil Carbon Emissions Rate | Tons/MWh fossil generation | | Emissions Avoided by Electrification of Other Sectors | Tons/year | # DER metrics often track interconnection timeliness, deployment, and utilization ### **DER Utilization** - DERs capable of providing grid services - DERs enrolled in grid services program - DERs being utilized for grid services - DERs being curtailed - Savings from non-wires solutions - MWh sold back to utility ## DG Deployment - Number of installations per year - Number of customers / MW participating in net metering or similar tariffs - MW installed by type (PV, CHP, small wind, etc.) - MWh generated as % of sales - Average interconnection time (days within the utility's control) - •Customer satisfaction survey responses ## Storage Deployment - Number of installations per year - MW installed capacity by type (battery, thermal, etc.) - MWh installed capacity as % sales # Hawaiian Electric: DER Interconnection Approval PIM ### **Metric:** The mean (average) number of business days it takes Hawaiian Electric to complete all steps within its control to interconnect DER systems <100kW in a calendar year ## **Target:** Annually improving 3-tiered upside and downside targets (max award @ 21 days, max penalty @ 42 days in 2021) ### **Financial Incentive:** 3-tiered upside award between \$500K to \$1.5M 3-tiered downside penalty between -\$130K and -\$450K - "Interconnect" is defined as energization of a customer's system. - The average is adjusted such that interconnection times more than 2 S.D.s above unadjusted average are made equal to 2 S.D.s. # Demand-side and EE metrics often track program participation, energy, and demand savings # **Energy Efficiency** - Annual and lifetime MWh energy efficiency savings - Program costs per MWh energy saved - EE Resource Standard (EERS) achievement - Number and percent of customers participating in EE programs # **Demand Flexibility** - Number and percent of customers participating in DR programs - MW participating in DR programs - Annual demand reduction as % of load - Annual and lifetime peak demand savings (MW) - Amount of DR that shapes, shifts, and sheds load # National Grid, Rhode Island: System Efficiency Incentive ### **Metric:** Annual MW peak capacity savings ### **Target:** Step function, with minimum & maximum targets; targets set to increase annually ### **Financial Incentive:** Upside only; utility can retain 45% of the quantified net benefits; customers retain 55% - The maximum allowed annual earnings increase annually starting at \$450,000 in 2019 and now at \$945,000 for 2021. - Parties given opportunity to define unquantified benefits for future inclusion in the PIM. 11 # There is a wide scope of metrics that can focus on affordability and customer equity # **Affordability** - Average monthly residential bill - Average monthly residential bill as a percent of annual income from lowincome families - Percent of residential customers by payment status / in arrears / disconnected for non-payment - O&M / rate base per customer / MWh - Energy / capacity costs per customer / MWh / MW # **Customer Equity** - Number / percent of customers that are LMI participating in DER or EE programs - Number / percent of customers that are LMI accessing customer portals - EV charging infrastructure installed in LMI communities - Reliability in targeted communities # Hawaiian Electric: Low-to-Moderate Income (LMI) Energy Efficiency PIM #### **Metrics:** - (1) Energy savings (kWh) for LMI residential customers - (2) Peak demand reduction (kW) for LMI residential customers (3) Number of LMI customers served ## **Target:** kW, kWh, and customer participation in excess of EE administrator's program year target ### **Financial Incentive:** Upside only; a \$/kWh and \$/kW factor for energy and peak demand savings above target, calculated as 50% of projected net energy- and demand-related benefits; a \$/customer factor calculated as 50% of targeted first-year bill savings (\$) from residential LMI. - Intended to incentivize the utility to more effectively collaborate with the EE administrator to increase energy, demand, and bill savings for LMI customers. - Capped at \$2 million. # Hawaii's recent PBR developments - Adopted 5 new PIMs in addition to existing Reliability and Customer Service PIMs. New PIMs focused on: - 1. DER Interconnection Approval - 2. LMI Energy Efficiency - 3. AMI Utilization - 4. RPS Acceleration - 5. DER Grid Services - Established 22 Reported Metrics and 15 Scorecards and across 11 Outcomes ## 11 Outcomes Prioritized Affordability* **Capital Formation** Cost Control Customer Engagement* Customer Equity* **DER Asset Effectiveness*** **EoT** GHG Reduction* Grid Investment Efficiency* Interconnection Experience* Resilience* # Hawaii: Affordability & Customer Equity | Affordability Metrics | | |------------------------|--| | LMI Energy
Burden | Schedule R typical and average annual bill as a percentage of low-income average income, by island | | Payment
Arrangement | Percent of customers entered into payment arrangements by zip code | | Disconnections | Percent of disconnections for non-
payment by customer class by
zip code | # LMI Program Participation Number of LMI customers participating in TOU rates, community based RE, DER, and DR, and percentage of program participants in program that are LMI # Hawaii: DER Interconnection & DER Asset Effectiveness | DER Interconnection Metric | | Target | |--------------------------------|---|---| | Total DER Interconnection Time | Average total number of calendar days to interconnect DER systems <100kW in a | 2021: 115 business
days
2022: 100 business
days
2023: 85 days | | | calendar
year | | | DER Asset Effectiveness Metrics | | |-------------------------------------|--| | DER Grid
Services
Capability | Percentage and total MW of DER systems capable of providing grid services | | DER Grid
Services
Enrollment | Percentage and total MW of capable DER systems enrolled in grid services programs | | DER Grid
Services
Utilization | Percentage and total MW of DER systems enrolled in grid services programs that are being utilized to provide grid services | | DER
Curtailment | Total MW and MWh of curtailment from DERs, including partial curtailment or power reductions | # Hawaii: GHG Emissions & Grid Investment Efficiency | GHG Emis | sions Metrics | Target | |------------------|---|---| | GHG
Emissions | GHG emissions in CO2e emissions per year in metric tons, reflecting emissions that both include and exclude biogenic CO2e | A straight-line reduction from 2019 GHG emissions to the 2045 target of carbon neutrality | | GHG
Intensity | Emissions intensity in CO2e per year in grams/kWh, reflecting emissions that both include and exclude biogenic CO2e. | A straight-line reduction from 2019 carbon intensity levels to the 2045 target of carbon neutrality | | Grid Investment Efficiency Metrics | | | |------------------------------------|--|--| | Avoided T&D Investment | Total value (\$) of deferred and/or avoided T&D capital investments due directly to the installation or acquisition of an NWA, reported annually by T&D capital investment with a description of the NWA that enabled the deferral, by service territory | | | NWA Total Cost | Total cost (\$) of NWAs deployed by the utility or acquired through a program or procurement, which are owned or operated by the Companies or third-party that defers or avoids T&D capital investment reported annually by capital investment and service territory | | # Hawaii: Customer Engagement & Resilience | Customer Engagement Metrics Target | | | |-------------------------------------|--|---| | Program Participation | Number and percent of customers participating in community-based RE projects, DER programs, and DR programs, including any existing DR programs. | 30% of customers | | Green Button
Connect My
Data | Number and percent of
customers that have used Green
Button Connect My Data to
enable sharing of information | Equal to
the
percent of | | Green Button
Download
My Data | Number and percent of
customers that have used Green
Button Download My Data | all
customers
with
advanced
meters
installed | | TOU
Participation | Number and percent of customers participating in time-varying tariffs, by customer class | | | AMI Opt-
Out | Percentage of customers opting out of advanced meters | | | Resilience Metrics | | |-----------------------------------|--| | Critical Load | Total amount of time that critical loads are without power in a year | | NIMS
Certification | Total number of employees completing
National Incident Management System
Incident Command System 100, 200,
and 300 certifications | | Emergency
Response
Training | Total number of employees that have attended emergency response training, annually | # Hawaii is now entering a new phase of performance incentive development - Grid Reliability / Adequacy of Supply - Timely Retirement of Fossil Fuel Generation Units - Interconnection of Large-Scale Renewable Energy Projects - Cost Control for Fossil Fuel, Purchased Power, and Other Non-ARA(Annual Revenue Adjustment) Costs - Expedient Utilization of Grid Services from Demand-Side Resources # Principles adopted in other jurisdictions to guide performance mechanism development - Performance metrics and incentives should: - Be clearly defined - o Be easily quantified, interpreted, and verified - Align with public policy goals - Maximize customers' share of net benefits - Be considered when the utility lacks incentive or has disincentive to align performance with public interest - Not overlap with existing incentives, obligations, or requirements - o Include informed targets based on historical data or policy goals - Avoid gaming and unintended consequences - Offer the utility no more than necessary to align utility performance with the public interest - Focus on outcomes where possible rather than inputs # Appendix # ConEdison: Beneficial Electrification ("BEEL") earnings adjustment mechanism (EAM) - Eligible technologies: - Battery and plug-in hybrid EVs - EV buses - Medium & heavy duty EVs - Air- and ground-source heat pumps and minisplits ### **Metric:** Total lifetime CO2e emissions reductions provided by annual incremental beneficial electrification technologies adopted during the rate year ## Target: Minimum, midpoint and maximum targets set at 5%, 20% and 35% above a baseline projection for emissions avoided by eligible technologies ### **Financial Incentive:** Upside only; 2, 5, and 10 basis points for achievement of minimum, midpoint, or maximum targets, respectively # Hawaiian Electric: "RPS-A" PIM - Penalty already established in statute and only assessed in milestone years - "Intended to reward exemplary performance" ### **Metric:** Hawaiian Electric's annual compliance with the RPS (% of total system generation from eligible resources) ## Target: Exceeding annual RPS goals established by a linear interpolation between milestone goals (2020, 2030, and 2045) ### **Financial Incentive:** \$/MWh for system generation above annual targets 2021-2022: \$20/MWh; 2023: \$15/MWh; 2023 and beyond: \$10/MWh # Hawaiian Electric: AMI Utilization PIM This PIM is focused on encouraging Hawaiian Electric to begin utilizing AMI as they are scaling deployment. ### **Metric:** Percentage of total customers with advanced meters delivering at least two of the following three benefits: (1) Customer authorization to share data with third parties, (2) Energy usage alerts, (3) Participation and new enrollment in TOU and DER program. ## **Target:** Upper target: 5% in 2021, 15% in 2022, 30% in 2023 Lower target: 2.5% in 2021, 10% in 2022, 20% in 2023. ### Financial Incentive: Hawaiian Electric is eligible for a reward that corresponds to a linear interpolation between the minimum (\$1M) and maximum (\$2M) rewards. # Hawaiian Electric: DER Grid Services PIM ### **Metric:** kW capacity of grid services from DERs acquired by the utility or by program ## **Target:** No target identified; pre-existing targets already established in utility plans ### **Financial Incentive:** Upside; reward structured on a \$/kW basis; max reward capped at \$1.5M for two-year duration of PIM. - Eligible grid services include Fast Frequency Response, load build, and load reduction. - Intended to be a short duration PIM that will be replaced with a refined PIM incentivizing utilization of DERs for grid services after two years. - PUC and PBR stakeholders are currently deliberating appropriate metrics and data to measure DER utilization for replacement PIM.